APPENDIX B DRAINAGE REPORT

South Lamar Blvd. Transportation Corridor Study

Drainage Report

Prepared for: City of Austin and HDR, Inc.

Prepared by: CAS Consulting and Services, Inc.

<u>Final</u> Michael C. Meriwether, P.E. #58563

07-09-2015 Date

Background

The South Lamar Transportation Corridor Study identifies short-, medium-, and long-term transportation projects to improve safety; increase vehicular, pedestrian and bicycle mobility and accessibility; and improve quality of life for the corridor. CAS Consulting and Services, Inc. (CAS), serving as a sub-consultant to HDR, Inc., was tasked with studying the existing drainage conditions and proposing solutions for areas that are out of compliance with the city requirements. These solutions coordinate with the overall South Lamar Blvd. improvements developed with the Transportation Corridor Study. The focus of the drainage study is along South Lamar Blvd. and its right of way, extending from Ben White Blvd (US 290) to Lady Bird Lake. CAS was also tasked with providing an order of magnitude opinion of probable construction cost for drainage related items.

Data Collection

Data collection included performing a site visit and obtaining GIS data, the hydraulic models accepted by the City of Austin (COA), and record drawings. A site visit was performed in February 2015 to identify the major drainage crossings, inlets, and flow patterns. COA GIS information was obtained from the City of Austin Development Web Map, including the storm drain, zoning, land use, and watershed boundaries.

Current hydraulic models (US Army Corp of Engineers HEC-RAS models), made available by the COA, were received for the West Bouldin Creek and Lady Bird Lake watersheds. The Lady Bird Lake model provided maximum water surface elevations for the 10-yr, 50-yr, 100-yr, and 500-yr storm frequency events.

Record drawings for projects along South Lamar Blvd. were obtained through the city. Several recent projects and site plans along the study corridor were identified for drainage information. Flow lines were estimated for old storm sewer lines with incomplete data. A list of record drawings that served as sources of data for this study is provided in Appendix A.

Evaluation Criteria

The COA Drainage Criteria Manual (DCM) provides guidance for current city requirements for drainage systems and structures. This study will determine whether the following criteria are met:

- COA DCM section 1.2.2.B states that street curbs, gutters, inlets and storm sewers shall be designed to intercept, contain, and transport all runoff from the 25-year frequency storm.
- COA DCM section 5.2.0 states that the 25-year hydraulic grade line (HGL) shall remain six inches below the theoretical gutter flow line of the storm drain inlets.
- COA DCM section 1.2.4 D states that for bridges and culverts in streets other than residential, runoff from the 100 year frequency storm shall not produce a headwater elevation at the roadway greater than six inches above the crown or six inches above any top of upstream curb elevation, whichever is lower.

Drainage System Identification

South Lamar Blvd. between US 290 and Lady Bird Lake is located within three watersheds with most of the study area within West Bouldin Creek watershed. The watersheds drain from south to north, discharging in Lady Bird Lake.

Fifteen drainage systems consisting of pipes and culverts were identified along South Lamar Blvd., based on data from a site visit, the COA storm drain GIS data and record drawings. A map of the location of the drainage systems and major existing drainage structures is provided in Appendix B.

Table 1 summarizes the locations of each system's major conveyance structure along South Lamar Blvd., its watershed, and the type of data source used to identify its level of service or used to model and analyze the system.

Drainage System	Location Along S. Lamar Blvd.	Watershed	Data Source
1	US 290 to Panther Trail – West Side	Barton Creek	COA Development Web Map
2	US 290 to Panther Trail – East Side	Barton Creek	COA Development Web Map
3	Panther Trail to Westforest Drive	West Bouldin Creek	Record Drawings & COA Dev. Web Map
4	Westforest Drive to Barton Skyway	Barton Creek	Record Drawings & COA Dev. Web Map
5	Barton Skyway to Bluebonnet Drive	West Bouldin Creek	COA Development Web Map
6	Bluebonnet Drive to Kinney Road	West Bouldin Creek	Record Drawings & COA Dev. Web Map
7	Kinney Road to Oltorf Street	West Bouldin Creek	COA StormCAD
8	Oltorf Street to Hether Street	West Bouldin Creek	COA StormCAD
9	Collier Street Area	West Bouldin Creek	COA StormCAD
10	Lamar Square to Treadwell	West Bouldin Creek	COA StormCAD
11	Treadwell Street to Bluff Street	West Bouldin Creek	COA StormCAD
12	Bluff Street to Barton Springs Road	West Bouldin Creek	Record Drawings & COA StormCAD
13	Barton Springs Road	West Bouldin Creek	COA StormCAD
14	Barton Springs Road to Toomey Road	West Bouldin Creek	Record Drawings & COA StormCAD
15	Toomey Road to Riverside Drive	Lady Bird Lake	Record Drawings & COA Dev. Web Map

Table 1. Identified Drainage Systems along South Lamar Blvd.

A description of each of the fifteen drainage systems follows. Land use for the study area is a mix of commercial, multi-family and single-family residences with commercial properties fronting Lamar and residential properties behind. Note that although South Lamar Blvd. is generally aligned from southwest to northeast, for the purposes of this narrative South Lamar Blvd was considered to run south to north with Barton Creek to the west and West Bouldin Creek to the east.

System 1

This network consists of 1980 feet of 18" RCP and five curb inlets along the west side of S. Lamar Blvd. beginning at Panther Trail and draining south towards Ben White Blvd. This feeds into additional larger pipes in TxDOT ROW that outfall into Barton Creek Watershed.

System 2

This network mirrors System 1 on the east side of S. Lamar Blvd and consists of 2021 feet of 24" to 48" RCP and five curb inlets with additional laterals feeding in from commercial developments to the east. This also feeds into additional larger pipes in TxDOT ROW that connect to the same outfall as System 1.

This system consists of a 4'x3' box culvert crossing Lamar from west to east about 500' south of Westrock. It drains 21 acres of land on the west side of Lamar, runs under a recently constructed apartment complex and outfalls into the West Bouldin Creek Watershed. Plans were found in DRG-5-A-540.

System 4 crosses South Lamar from east to west via a 2'x2' box culvert and then runs north along Lamar for 330 feet through a 30" RCP before turning west to outfall into Barton Creek Watershed. Partial plans were found in SSM-B-2-487.

System 5 runs north along Lamar from Barton Skyway to Bluebonnet collecting flows from residential and commercial areas on both sides of Lamar. The main line consists of 574 feet of 18" to 24" RCP along the east side of Lamar. There are two laterals feeding the system from the west: a 4'x1.5' box culvert crossing Lamar at La Casa and another 4'x1.5' box culvert crossing Lamar at Bluebonnet. The system then turns east at Bluebonnet and outfalls into a tributary of West Bouldin Creek Watershed via a 30" RCP.

System 6 collects flows from an area between Bluebonnet and Kinney. The main line consists of 850 feet of dual 24" RCP along the west side of Lamar. After crossing Lamar at Kinney, the 2-24" RCP feed into a 6'x1.5' box culvert that runs east into a tributary of West Bouldin Creek Watershed. Plans were found in SSM-B-2-549 and SSM-B-2-510.

System 7 drains the Lamar ROW from Kinney to Oltorf via street surface flow until just south of Oltorf where inlets on both sides of the road capture the flow. The west side inlet feeds an 18" RCP that increases to a 4'x1.5' box culvert that crosses Lamar at Oltorf and transitions back to 18" RCP. The system than picks up the flow from an 18" RCP that drains the east side inlet and runs east via a 21" RCP in Oltorf St. The system outfalls into West Bouldin Creek at Oltorf St. Partial plans were found in PPC-1-A-5969.

System 8 drains the Hether St. area and consists of dual 4'x4' box culverts that cross Lamar from west to east about 250' north of Hether St. The culverts daylight at a vertical headwall at the east edge of Lamar ROW in the West Bouldin Creek Watershed. Plans were found in DRG-5-A-540.

System 9

System 9 drains the Collier St. area and crosses Lamar via a 24" RCP at Collier St. The system also includes a curb inlet about 140 feet north of Collier St. that captures flow extending 1200 feet north on Lamar to Lamar Square. This inlet feeds an 18" RCP that crosses Lamar from west to east, joins with the main 24" RCP and transitions to a 36" RCP that outfalls in a drainage ditch parallel to the Union Pacific Railroad ROW. Plans were found in DRG-1-A-6833.

System 10 encompasses the area from Lamar Square to Treadwell and crosses Lamar at Treadwell via 24" RCP. The 24" RCP runs east along Treadwell and outfalls into the drainage ditch parallel to the Union Pacific Railroad ROW. Plans were found in SSM-B-2-524.

System 11

System 11 drains an area on the west side of Lamar bounded by Bluff St., Jessie St. and Treadwell St. The system crosses Lamar from west to east at Bluff St. via a 36" RCP that daylights into West Bouldin Creek.

SYSTEM 11	MARY DAWSON POCKET PARK
BLUFF 57	

System 12 drains both sides of Lamar from Bluff to Barton Springs Road and consists of 643 feet of 18" to 48" RCP. The main line runs down the center of Lamar and then turns east at Barton Springs Road where it transitions to a 54" RCP that outfalls into West Bouldin Creek at Barton Springs Road. Plans were found in PPC-1-A-7801.

System 13

System 13 drains Barton Springs Road west of Lamar. It crosses Lamar via a 54" RCP that runs parallel to the System 12 main. It also outfalls into West Bouldin Creek at Barton Springs Road. Plans were found in PPC-1-A-7801.

System 14 drains both sides of Lamar from Barton Springs Road to Toomey and consists of about 940 feet of 18" to 36" RCP. The main line runs down the center of Lamar and then turns east about 100 feet north of Barton Springs Road where it transitions to a 42" RCP that crosses under Lee Barton Road and outfalls into a ditch leading to West Bouldin Creek. Plans were found in PPC-1-A-7801.

System 15

System 15 drains both sides of Lamar from Toomey to Riverside and includes about 100 feet of 18" RCP in the Lamar ROW. The main line starts at a curb inlet on the west side of Lamar, crosses Lamar, connects to another curb inlet and runs parallel to Riverside Drive and outfalls into Lady Bird Lake . Partial plans were found in PPC-1-A-7801.

Analysis Methodology

In order to determine whether the drainage systems are in compliance, the evaluation focused on:

- the capacity of major drainage structures to convey the 25-year storm event;
- the 25-year hydraulic grade line remaining six inches below the theoretical gutter flow line of the storm drain inlets;
- the water surface elevation at the bridge or culvert upstream face to be within the allowable 100year event overtopping depth of six inches above the crown or any top of upstream curb elevation, whichever is lower.

Compliance with city code for the 15 systems was determined by either identifying the level of service in the City-provided StormCAD model, reviewing recent record drawings, or if recent documentation was not found, modeling the system with storm sewer analysis software.

The evaluation of Systems 8 through 14 is documented in the City-provided StormCAD model. Systems 1 through 7 were evaluated using Autodesk Storm and Sanitary Analysis 2015 software (Autodesk SSA). This analysis does not evaluate for the capacity of storm drain inlets and the resulting spread, nor the capacity and velocity within the lateral lines of the storm drain systems. Due to the small size of System 15, pipe capacity was evaluated using Manning's equation.

Model generation within Autodesk SSA requires determining the pipe invert elevations, pipe lengths, outfall information, and the network configuration. These parameters were based on record drawing information and reasonable assumptions based on ground elevations where no flowline information was available. Inlets were modeled as junctions to avoid identifying street and curb inlet details, which is beyond the scope of this study.

Discharges for the 25-year storm event were determined using the Rational Method. Calculation of discharge required several steps. Drainage areas for each system were delineated based on COA 2-ft contours. Time of concentration values were calculated using COA DCM guidelines for determination of sheet flow, shallow concentrated and channel flow. Manning's n values for sheet flow and overland flow calculations were determined using existing conditions zoning maps and the land use. Rational method runoff coefficient C values were based on the maximum allowable impervious cover percentages as listed in the COA's zoning ordinance and maps.

Calculations and data for the existing conditions analysis, including discharges, time of concentration calculations, and Rational Method parameters can be found in Appendix C.

Existing Conditions Analysis

This section summarizes the evaluation of existing drainage systems along South Lamar Blvd. A plan view schematic of the Autodesk SSA results is provided. The Autodesk SSA program identifies pipes that are surcharged or junctions with hydraulic grade lines that exceed the rim or ground elevation with the color red. The program considers pipes surcharged if the ratio of maximum flow depth to total depth exceeds one. Pipe capacity is exceeded if the ratio of maximum flow to design flow exceeds one. The existing drainage systems were modeled only within the South Lamar Transportation Corridor Study

area. Where systems extended well beyond the study area, the system was modeled to a point where down-gradient conditions no longer have an effect on the drainage systems in the study area.

System 1

Analysis with Autodesk SSA shows that this system does not meet criteria for a 25-yr level of service. As summarized in Table 1A, the modeled system is surcharged (pipes are running full) during the 25-yr storm event at the third pipe in the system. Pipes 3 thru 5 need to be upsized to 24" diameter.

		Pipe		Design		Peak Flow	
		Dia. or	Pipe	Flow	Peak Flow/	Depth/	
	Pipe	Height	Width	Capacity	Design Flow	Total Depth	Reported
Pipe	Shape	(in)	(in)	(cfs)	Ratio	Ratio	Condition
Link-01	CIRCULAR	18	18	6.32	0.68	0.46	Calculated
Link-02	CIRCULAR	18	18	6.34	1.02	0.68	Calculated
Link-03	CIRCULAR	18	18	6.45	1.50	1.00	SURCHARGED
Link-04	CIRCULAR	18	18	6.79	1.40	0.93	> CAPACITY
Link-05	CIRCULAR	18	18	8.25	1.40	0.94	> CAPACITY

Table 1A. System 1 Existing Conditions Results

Figure 1. System 1 Existing Conditions Results Schematic

Analysis with Autodesk SSA shows that this system does not meet criteria for a 25-yr level of service. As summarized below in Figure 2 and Table 2, the modeled system is surcharged (pipes are running full) during the 25-yr storm event for Pipes 2 and 3 and Pipe 4 is over capacity. Pipes 2, 3 and 4 need to be upsized to 30", 36" and 42" diameter, respectively.

		Pipe		Design		Peak Flow	
		Dia. or	Pipe	Flow	Peak Flow/	Depth/	
	Pipe	Height	Width	Capacity	Design Flow	Total Depth	Reported
Pipe	Shape	(in)	(in)	(cfs)	Ratio	Ratio	Condition
Link-01	CIRCULAR	24	24	15.75	0.72	0.60	Calculated
Link-02	CIRCULAR	24	24	13.74	1.00	1.00	SURCHARGED
Link-03	CIRCULAR	30	30	25.64	1.01	1.00	SURCHARGED
Link-04	CIRCULAR	36	36	40.86	1.04	0.93	> CAPACITY
Link-05	CIRCULAR	42	42	60.66	1.00	0.82	Calculated
Link-06	CIRCULAR	48	48	113.21	0.72	0.63	Calculated
Link-07	CIRCULAR	48	48	112.64	0.90	0.74	Calculated

Table 2. System 2 Existing Conditions Results

Figure 2. System 2 Existing Conditions Results Schematic

Analysis with Autodesk SSA shows that the entire system meets the criteria for a 25-yr level of service. Although the modeled 3'x4' box culvert is over capacity for the 25-year storm event as summarized below in Figure 3 and Table 3, the hydraulic grade line criteria is met for the entire system. The 100-year flow is 114.5 cfs and the box culvert needs to be upsized to 3'x6' to carry this flow.

		Pipe		Design		Peak Flow	
		Dia. or	Pipe	Flow	Peak Flow/	Depth/	
	Pipe	Height	Width	Capacity	Design Flow	Total Depth	Reported
Pipe	Shape	(in)	(in)	(cfs)	Ratio	Ratio	Condition
Link-01	Rectangular	36	48	83	1.02	0.90	> CAPACITY
Link-02	Rectangular	36	48	214	0.53	0.52	Calculated
Link-03	Rectangular	36	48	214	0.53	0.51	Calculated

Table 3. System 3 Existing Conditions Results

Figure 1. System 3 Existing Conditions Results Schematic

Analysis with Autodesk SSA shows that Pipes 2 and 3 do not meet criteria for a 25-yr level of service. As summarized below in Figure 4 and Table 4, pipes 2 and 3 are surcharged. In addition, the system has a 30 inch pipe flowing into a 27 inch pipe that in turn flows into a 24 inch pipe. This condition violates the DCM rule prohibiting larger diameter pipes flowing into smaller diameter pipes. Pipe 1 needs to be upsized from 15" to 18" diameter to meet the minimum pipe size requirement of the DCM.

		Pipe		Design		Peak Flow	
		Dia. or	Pipe	Flow	Peak Flow/	Depth/	
	Pipe	Height	Width	Capacity	Design Flow	Total Depth	Reported
Pipe	Shape	(in)	(in)	(cfs)	Ratio	Ratio	Condition
Link-01	CIRCULAR	15	15	7.71	0.42	0.45	Calculated
Link-02	CIRCULAR	30	30	33.71	1.00	1.00	SURCHARGED
Link-03	CIRCULAR	27	27	26.34	1.00	1.00	SURCHARGED
Link-04	CIRCULAR	24	24	37.26	0.72	0.62	Calculated
Link-05	Rectangular	24	24	20.41	0.80	0.68	Calculated

 Table 2. System 4 Existing Conditions Results

Figure 2. System 4 Existing Conditions Results Schematic

Analysis with Autodesk SSA shows that the majority of the system meets criteria for a 25-yr level of service. Results, as summarized below in Figure 5 and Table 5, show that 25-yr storm event peak flows do not exceed pipe design flow capacity for the system, except at Pipes 1 and 2. These two pipes need to be upsized to 24" diameter. Pipes 7 and 8 cross Lamar Blvd.

		Pipe		Design		Peak Flow	
		Dia. or	Pipe	Flow	Peak Flow/	Depth/	
	Pipe	Height	Width	Capacity	Design Flow	Total Depth	Reported
Pipe	Shape	(in)	(in)	(cfs)	Ratio	Ratio	Condition
Link-01	CIRCULAR	18	18	23.09	1.00	1.00	SURCHARGED
Link-02	CIRCULAR	18	18	23.05	1.00	1.00	SURCHARGED
Link-03	CIRCULAR	24	24	49.71	0.62	0.56	Calculated
Link-04	CIRCULAR	24	24	49.66	0.70	0.60	Calculated
Link-05	CIRCULAR	30	30	101.39	0.38	0.43	Calculated
Link-06	CIRCULAR	30	30	93.22	0.61	0.56	Calculated
Link-07	Rectangular	18	48	102.45	0.21	0.27	Calculated
Link-08	Rectangular	18	48	80.47	0.08	0.15	Calculated

Table 3. System 5 Existing Conditions Results

Figure 3. System 5 Existing Conditions Results Schematic

Analysis with Autodesk SSA shows that this system does not meet criteria for a 25-yr level of service. As summarized below in Figure 2 and Table 3, the modeled system is surcharged (pipes are running full) during the 25-yr storm event for Pipes 1 and 2. The links shown as red lines in Figure 6 indicate that Pipes 3 through 7 need to be upsized as well. New sizes are: Pipe 1 - 30"; Pipe 2 - 30"; Pipe 3 - 30"; Pipe 4 - 36"; Pipe 5 - 42"; Pipe 6 - 42"; and Pipe 7 - 30"x72". Existing and proposed Pipes 1 through 6 are dual barrels.

		Pipe		Design		Peak Flow	
		Dia. or	Pipe	Flow	Peak Flow/	Depth/	
	Pipe	Height	Width	Capacity	Design Flow	Total Depth	Reported
Pipe	Shape	(in)	(in)	(cfs)	Ratio	Ratio	Condition
Link-01	CIRCULAR	24	24	23.09	1.00	1.00	SURCHARGED
Link-02	CIRCULAR	24	24	23.05	1.00	1.00	SURCHARGED
Link-03	CIRCULAR	24	24	49.71	0.62	0.56	Calculated
Link-04	CIRCULAR	24	24	49.66	0.70	0.60	Calculated
Link-05	CIRCULAR	24	24	101.39	0.38	0.43	Calculated
Link-06	CIRCULAR	24	24	93.22	0.61	0.56	Calculated
Link-07	Rectangular	18	72	102.45	0.21	0.27	Calculated
Link-08	CIRCULAR	42	42	80.47	0.08	0.15	Calculated

Figure 6. System 6 Existing Conditions Results Schematic

Analysis with Autodesk SSA shows that the entire system meets the criteria for a 25-yr level of service. Although Pipe 4 is over capacity for the 25-year storm event as summarized below in Figure 7 and Table 7, the hydraulic grade line criteria is met for the entire system.

		Pipe		Design		Peak Flow	
		Dia. or	Pipe	Flow	Peak Flow/	Depth/	
	Pipe	Height	Width	Capacity	Design Flow	Total Depth	Reported
Pipe	Shape	(in)	(in)	(cfs)	Ratio	Ratio	Condition
Link-01	CIRCULAR	18	18	15.46	0.96	0.75	Calculated
Link-02	Rectangular	18	48	74.11	0.20	0.27	Calculated
Link-03	CIRCULAR	18	18	16.96	0.85	0.69	Calculated
Link-04	CIRCULAR	21	21	23.27	1.01	0.89	> CAPACITY

Table 7. System 7 Existing Conditions Results

Figure 7. System 7 Existing Conditions Results Schematic

System 8 was analyzed by the City using StormCAD. Line 14167.1 (dual 4'x4' box culvert) is undersized for the 25-year event. This line crosses Lamar and daylights at a headwall on the east ROW of Lamar. In order to accommodate the increased width of the proposed ideal roadway section, the headwall would need to be moved back 10 feet to the east and the box culverts extended to match. In addition, two 4'x4' box culverts would need to be added to satisfy the capacity requirements. Lateral line 14170 (18" RCP) is also undersized per the analysis and would need to be upsized to 30" diameter.

Label	Element	Flow (cfs)	Message	Source
14167.1	Conduit	451.63	Conduit discharge is above design discharge.	Hydraulics Validation
14170	Conduit	38.95	Conduit discharge is above design discharge.	Hydraulics Validation

Figure 8. System 8 Existing Conditions Schematic

System 9 was analyzed by the City using StormCAD. Lines 13834 (24" RCP), 13841 (36" RCP) and 13840 (18" RCP) are undersized for the 25-year event. Using Manning's equation, the proposed lines crossing Lamar (Conduit 13834 and 13840) need to be 30" and 36" diameter and Line 13841 running parallel to Lamar needs to be upsized to 42" diameter.

Label	Element	Flow (cfs)	Message	Source
13834	Conduit	61.38	Conduit discharge is above design discharge.	Hydraulics Validation
13840	Conduit	85.05	Conduit discharge is above design discharge.	Hydraulics Validation
13841	Conduit	105.05	Conduit discharge is above design discharge.	Hydraulics Validation

Figure 9. System 9 Existing Conditions Schematic

System 10 was analyzed by the City using StormCAD. Lines 12930 (18" RCP) and 94388 (24" RCP) are undersized for the 25-year event. To meet capacity requirements, the lines need to be upsized to 24" and 30" respectively. Conduit 12933 crosses Lamar Blvd.

Label	Element	Flow (cfs)	Message	Source
12930	Conduit	43.99	Conduit discharge is above design discharge.	Hydraulics Validation
12933	Conduit	46.96	None	
94388	Conduit	46.91	Conduit discharge is above design discharge.	Hydraulics Validation

Figure 10. System 10 Existing Conditions Schematic

System 11 was analyzed by the City using StormCAD. The results show that existing pipes 23216 and 23244 (both 36" RCP) have adequate capacity for the 25-year storm. Pipe 23216 needs to be upsized to 42" diameter to carry the 100-year flows (Q100=135.78 cfs). Conduit 23216 crosses Lamar Blvd.

Label	Element	Flow (cfs)	Message	Source
23244	Conduit	82.11	None	Hydraulics Validation
23216	Conduit	98.66	None	Hydraulics Validation

 Table 11. System 11 Existing Conditions Results

Figure 11. System 11 Existing Conditions Schematic

System 12 was analyzed by the City using StormCAD. The results show that existing pipe 260391 (30" RCP) is undersized for the 25-year storm and pipe 260399 (42" RCP) is oversized for minimum velocity. A review of the approved plans (PPC-1-A-7801) shows that pipes 260391 and 260399 meet the criteria of the DCM. The system experiences pressure flow in some cases, but the HGL is below pavement. No changes to this system are needed. Conduit 260401 crosses Lamar Blvd.

Label	Element	Flow (cfs)	Message	Source
260391	Conduit	56.12	Conduit discharge is above design discharge.	Hydraulics Validation
260393	Conduit	82.29	None	Hydraulics Validation
260396	Conduit	94.65	None	Hydraulics Validation
260399	Conduit	14.13	Conduit does not meet min. velocity constraint.	Hydraulics Validation
260401	Conduit	104.52	None	Hydraulics Validation

Tabla	12	Suctom	121	Evicting	Conditiona	Doculto
rable	12.	System	121	CAISUNE	Conditions	Results

Figure 12. System 12 Existing Conditions Schematic

System 13 was analyzed by the City using StormCAD. This system was designed in 1992 to carry 135 cfs at the Lamar crossing. In 2000, the City constructed a bypass to the west that reduced the flow to 28 cfs. As a result, the pipes (54" RCP) are oversized and the velocity is below 2.5 fps. No changes to this system are needed. Conduit 381908 and 381909 cross Lamar Blvd.

Label	Element	Flow (cfs)	Message	Source
381908	Conduit	28.40	Conduit does not meet min. velocity constraint.	Hydraulics Validation
381909	Conduit	28.09	Conduit does not meet min. velocity constraint.	Hydraulics Validation

Figure 13. System 13 Existing Conditions Schematic

System 14 was analyzed by the City using StormCAD. This system design was approved by the City in 1992 despite having pressure flow in the trunk line. The HGL is above pavement level but this can be attributed in part to backwater effects from West Bouldin Creek. Upsizing the pipes in this system will have minimal effect and are not recommended. A solution that merits further study is diverting the flows from the west into System 13. Conduit 260435 crosses Lamar Blvd.

Label	Element	Flow (cfs)	Message	Source
260421	Conduit	46.97	Conduit discharge is above design discharge.	Hydraulics Validation
260435	Conduit	45.74	Conduit discharge is above design discharge.	Hydraulics Validation
261599	Conduit	23.90	Conduit discharge is above design discharge.	Hydraulics Validation
261600	Conduit	26.20	Conduit discharge is above design discharge.	Hydraulics Validation

Analysis with Autodesk SSA shows that the entire system meets the criteria for a 25-yr level of service. Although Pipe 4 is over capacity for the 25-year storm event as summarized below in Figure 15 and Table 15, the hydraulic grade line criteria is met for the entire system. Flow line elevations were assumed for System 15 as the record drawings did not have this information. Link 06 and 07 cross Lamar Blvd.

		Pipe		Design		Peak Flow	
		Dia. or	Pipe	Flow	Peak Flow/	Depth/	
	Pipe	Height	Width	Capacity	Design Flow	Total Depth	Reported
Pipe	Shape	(in)	(in)	(cfs)	Ratio	Ratio	Condition
Link-06	CIRCULAR	18	18	11.37	0.80	0.65	Calculated
Link-07	CIRCULAR	18	18	11.32	0.79	0.68	Calculated
Link-08	CIRCULAR	18	18	10.99	0.80	0.68	Calculated
Link-09	CIRCULAR	18	18	18.04	1.04	0.84	> CAPACITY

Table 15. System 15 Existing Conditions Results

Figure 4. System 15 Existing Conditions Results Schematic

Table 16. Summary of Existing Systems

	Do the major		Is the water surface elevation at the bridge or	
	drainage	Is the 25-year hydraulic grade	culvert upstream face within the allowable	Is the
	structure(s) have	line six inches or less below	100-year event overtopping depth of six	COA
Drainage	capacity to convey	the theoretical gutter flow line	inches above the crown or any top of	criteria
System	the 25-yr event?	of the storm drain inlets?	upstream curb elevation, whichever is lower?	met?
1	no	no		no
2	no	no		no
3	yes	yes	no	no
4	no	no		no
5	no	no		no
6	no	no		no
7	yes	yes		yes
8	no	no	no	no
9	no	no		no
10	no	no		no
11	no	no		no
12	no	no		no
13	yes	no		no
14	no	no		no
15	yes	yes		yes

A summary of the hydrology calculations is found in Appendix C. A copy of the existing conditions Autodesk SSA analysis output is found in Appendix D.

Proposed Improvements

The transportation configuration proposed for South Lamar Blvd. will require modification of existing major storm drain systems due to reconfiguring the roadway. Most existing inlets and lateral lines will need to be replaced. Assuming the proposed roadway drains outward toward the right of way lines, the storm drain design includes the upsizing the existing lines as needed and adding trunk lines and laterals to connect to proposed curb inlets.

Drainage	Existing Conditions		Proposed Conditions
System	Existing Structures	Evaluation Summary	Proposed Improvement
			Replace with 1004 LF of
1	18" RCP	Design capacity <peak flow<="" td=""><td>24" RCP</td></peak>	24" RCP
			Replace with 909 LF of
2	24" RCP, 30" RCP, 36" RCP, 42" RCP	Design capacity <peak flow<="" td=""><td>30" to 48" RCP</td></peak>	30" to 48" RCP
			Replace with 55 LF of
3	3'X4' Box Culvert	Design capacity <peak flow<="" td=""><td>3'x6' Box Culvert</td></peak>	3'x6' Box Culvert
		Design capacity <peak flow,<="" td=""><td></td></peak>	
	15" RCP, 24" RCP, 27" RCP, 30" RCP, 2'x2' Box	larger diameter pipe drains to	Replace with 255 LF of
4	Culvert	smaller diameter pipe	30" RCP
			Replace with 909 LF of
5	18" RCP, 24" RCP, 30" RCP	Design capacity <peak flow<="" td=""><td>24" to 36" RCP</td></peak>	24" to 36" RCP
			Replace with 943 LF of
-			30" to 42" RCP & 2.5'x6'
6	2-24" RCP, 1.5'X4' Box Culvert	Design capacity <peak flow<="" td=""><td>Box Culvert</td></peak>	Box Culvert
7			
/	18 RCP, 21 RCP, 1.5 X4 Box Culvert	Meets code	
8	2 4'X4' Box Culverts	Design canacity/neak flow	Add two 4 A4 Box
0	2-4 A4 Box Curvents	Design capacity <peak now<="" td=""><td>Paplace with 238 LE of</td></peak>	Paplace with 238 LE of
9	18" RCP 24" RCP 36" RCP	Design capacity <pre>reak flow</pre>	30" TO 42" RCP
	10 KCI, 24 KCI, 50 KCI		Replace with 217 LE of
10	15" RCP. 18" RCP. 24" RCP	Design capacity <peak flow<="" td=""><td>18" to 30" RCP</td></peak>	18" to 30" RCP
10			Replace with 152 LF of
11	36" RCP	Design capacity <peak flow<="" td=""><td>42" RCP</td></peak>	42" RCP
		Design capacity>peak flow	
		but street is inundated by	Need to reduce West
		West Bouldin Creek (inside	Bouldin Creek flooding -
12	18" TO 54" RCP	25- & 100-year flood plain)	out of project scope
			See comment for
13	54" RCP	Same as 12	System 12
			See comment for
14	18" TO 36" RCP	Same as 12	System 12
15	18" RCP	Meets code	

Table 4. Summary of Existing Major Drainage Structures and Proposed Improvements

Discharge calculations for proposed analysis can be found in Appendix E. A map of the location of the storm sewer systems is found in Appendix B, Exhibits 1 & 2.

Detention and Water Quality Treatment Requirements

The COA DCM states that peak flow rates under proposed development must be returned to existing peak flow rates as considered from a point of discharge. Controlling the peak flow rates can be done by either storage on-site or off-site (detention pond) or by participation in an approved Regional Stormwater Management Program (RSMP). To participate in the RSMP a fee is required based on the impervious acres and includes a cost for construction and land. Currently, West Bouldin Creek is not included in the list of watersheds eligible for participation in the RSMP per DCM 8.2.2. If storm water runoff peak flow rates increase within the right of way due to the increase in impervious cover, then detention will be

required. Since raised, landscaped medians will be added where currently pavement exists it is not anticipated that detention will be required for this project.

Water quality treatment is required if the proposed project increases the impervious cover amount. Sidewalks are excluded from impervious cover calculations for the purposes of water quality requirements. It is not anticipated that water quality treatment will be required for this project.

Cost Estimate

Drainage-related items included in the cost estimate are box culverts, pipes, inlets, headwalls, and manholes. The cost of pavement trench repair and non-drainage items such as traffic control and sedimentation/erosion control were assumed to be covered under the roadway cost estimate. Sources of cost were City of Austin bid tabs, and TxDOT bid information.

Several design assumptions were made to determine the cost estimate for the drainage systems. The lateral lines draining from the inlet to the trunk line are assumed as 18" RCP. Lateral pipe sizes for the trunk will increase towards the system's major structure, starting at no more than 300 feet from the system's drainage divide. Inlets were assumed to be spaced 300 feet apart along the trunk line. Lateral pipe lengths were determined based on the location of the inlet with respect to the proposed typical section. The drainage system's trunk line segments were sized based on the number of inlets feeding into each segment. Headwalls were required if replacement or extension of the major structure was required. Storm sewer manholes were added to account for the DCM manhole spacing requirements.

The order of magnitude opinion of probable construction cost is \$3.13 million. A breakdown of costs are provided in Table 18.

Item	Units	Quantity	Unit Cost	Cost
18" RCP	LF	4260	\$75	\$319,475
24" RCP	LF	5402	\$90	\$486,140
30" RCP	LF	4345	\$105	\$456,187
36" RCP	LF	2772	\$120	\$332,668
42" RCP	LF	568	\$135	\$76,645
48" RCP	LF	258	\$195	\$50,370
2 - 30" RCP	LF	847	\$180	\$152,383
30"x72" box culvert	LF	96	\$300	\$28,836
36"x72" box culvert	LF	55	\$450	\$24,557
48"x48" box culvert	LF	196	\$250	\$49,000
Headwalls	EA	1	\$10,000	\$10,000
Inlets	EA	90	\$5,300	\$477,000
Manholes	EA	10	\$4,000	\$40,000
			Subtotal	\$2,503,260
			25% Contingency	\$625,815
			Total Cost	\$3,12,9075

m 11 c	A D D		D '	D 1 . 1	т.
Table 5.	Cost Esti	mate for	Drainage-	Related	Items

APPENDIX A

Data Sources

Record Drawings

- SSM-B-2-510 Storm Sewer on South Lamar Blvd. from Kinney Road to Bluebonnet Lane, 1958
- SSM-B-2-549 Storm Sewer on Kinney Road Easement from South Lamar Blvd. to south of Thornton Road, 1959
- SSM-B-2-524 Storm Sewer on Treadwell Street from South Lamar Blvd. east 467 feet, 1959
- SSM-B-2-487 Storm Sewer on South Lamar Blvd. from Barton Skyway 160' north to 240' south, 1957
- DRG-5-A-540 Miscellaneous Storm Sewers on Hether Street, Kinney Ave., Bauerle Ave., and Goodrich Ave., 1960
- DRG-5-A-1019 Plan & Profile of 4'x3' Box Culvert for Jay Johnson Enterprises, prepared by Bury & Pittman, Inc., 1986
- PPC-1-A-5952 Storm Sewer on Collier Street at South Lamar Blvd., 1969
- PPC-1-A-5962 Storm Sewer on South Lamar Blvd. at Westrock Drive, 1969
- PPC-1-A-5969 Storm Sewer on West Oltorf Street at South Lamar Blvd.
- DRG-1-A-6833 Shepherd Tract Drainage and Fill Plans, prepared by O.W. Holmes, 1980
- PPC-1-A-7801 South Lamar Blvd./Barton Springs Road Intersection Improvements, prepared by HDR Engineering, Inc., 1992
- PPC-1-A-7934 TSM Improvements, South Lamar at Oltorf Street, prepared by COA PW, 1990
- SPL-SP-86-009 State Farm Insurance Service Center, prepared by Clayton Rutter Engineers, Inc., 1986
- SPL-SP-2010-0264C Wells Fargo Bank, 3931 S. Lamar, prepared by Prossner and Associates, Inc., 2011

APPENDIX B

Exhibit 1 – Existing Storm Sewer Systems (1 of 2)

Exhibit 2 - Existing Storm Sewer Systems (2 of 2)

NR NR NR NR NR NR NR NR NR NR	EXHIBIT 1 EVICTING CTODM CENTED	SYSTEMS SHEET 1 OF 2
STING STORM WER SYSTEM	SOUTH LAMAR TRANSPORTATION CORRIDOR STUDY	CAS CONSULTING & SERVICES INC 7908 CAMERON RD AUSTIN, TEXAS 78754 REG. No. F-003572
WER PIPE	THIS EXHIBIT IS RELEASED FOR THE PURPOSES OF INTERIM REVIEW UNDER THE AUTHORITY OF MICHAEL C. MERINGTHER	P.E. NO. 3000 April 16, 2015 FINS DOCUMENT 15, NOT INTENDED FOR BIDDING, PERMITTING AND/OR CONSTRUCTION PURPOSES
	CITY OF AUSTIN	

	0 400 800 SCALE IN FEET (SCALE BAR MEASURES 1" WHEN PLOTTED FULL SIZE)	EXHIBIT 2 EVICTING STODM SEWED	EALD LINU DI URM DEWER SYSTEMS SHEET 2 OF 2
₹M M		SOUTH LAMAR TRANSPORTATION CORRIDOR STUDY	CAS CONSULTING & SERVICES INC 7908 CAMERON RD AUSTIN, TEXAS 78754 REG. No. F-003572
		THIS EXHIBIT IS RELEASED FOR THE PURPOSES OF INTERM REVIEW UNDER THE AUTHORITY OF MICHAEL C. MERWETHER	P.E. NU. 3000 P.H. D. 2015 THIS DOCUMENT IS NOT INTENDED FOR BIDDING, PERMITING AND/OR CONSTRUCTION PURPOSES
		CITY OF AUSTIN	-

APPENDIX C

Summary of Hydrology Calculations

					25-Year Storm	n Event	
Drainage System	Basins	Area (ac)	Time of Concentration, tc (min)	Intensity, I (in/hr)	Runoff Coefficient, C	Ultimate Conditions Discharge, Q=CIA (cfs)	Q/Acre
1	1-A	0.80	5.0	10.1	0.86	7.0	8.7
1	1-B	1.16	7.8	8.9	0.86	8.9	7.7
2	2-A	6.42	8.7	8.6	0.85	47.0	7.3
2	2-B	13.89	10.9	7.9	0.84	92.1	6.6
	3-A	2.32	5.0	10.1	0.81	19.1	8.2
3	3-B	21.07	32.1	4.7	0.78	77.7	3.7
	3-C	1.10	5.0	10.1	0.86	9.6	8.7
	4-A	0.52	5.0	10.1	0.60	3.2	6.1
4	4-B	6.73	17.8	6.4	0.72	31.1	4.6
	4-C	2.15	9.7	8.3	0.81	14.5	6.7
	5-A	7.73	22.4	5.7	0.81	36.0	4.7
	5-B	6.80	10.2	8.1	0.81	45.0	6.6
5	5-C	1.38	14.7	7.0	0.60	5.8	4.2
	5-D	0.83	5.0	10.1	0.81	6.8	8.2
	5-E	3.44	12.5	7.5	0.71	18.3	5.3
	6-A	1.22	5.0	10.1	0.86	10.6	8.7
	6-B	19.07	16.4	6.7	0.64	81.3	4.3
6	6-C	2.34	5.0	10.1	0.86	20.3	8.7
0	6-D	5.51	14.5	7.1	0.71	27.4	5.0
	6-E	0.88	5.0	10.1	0.86	7.7	8.7
	6-F	1.54	5.0	10.1	0.84	13.0	8.5
7	7-A	1.56	5.0	10.1	0.85	13.3	8.6
/	7-B	1.05	5.0	10.1	0.84	8.9	8.5
15	15-A	0.97	5.0	10.1	0.81	8.0	8.2
15	15-B	1.15	5.0	10.1	0.84	9.7	8.5

Table 19. Calculated 25-Year Peak Flow Rates for Sub-basins for Storm Drain Analysis

					100-Year Stori	n Event	
Drainage		Area	Time of Concentration, tc	Intensity, I	Runoff Coefficient,	Ultimate Conditions Discharge,	
System	Basins	(ac)	(min)	(in/hr)	C	Q=CIA (cfs)	Q/Acre
1	1-A	0.80	5.0	12.5	0.95	9.5	11.9
-	1-B	1.16	7.8	11.2	0.95	12.4	10.7
2	2-A	6.42	8.7	10.9	0.94	65.6	10.2
_	2-B	13.89	10.9	10.1	0.93	129.7	9.3
	3-A	2.32	5.0	12.5	0.90	26.2	11.3
3	3-B	21.07	32.1	6.2	0.88	114.5	5.4
	3-C	1.10	5.0	12.5	0.95	13.1	11.9
	4-A	0.52	5.0	12.5	0.68	4.4	8.5
4	4-B	6.73	17.8	8.3	0.82	45.9	6.8
	4-C	2.15	9.7	10.5	0.90	20.3	9.4
	5-A	7.73	22.4	7.5	0.90	51.9	6.7
	5-B	6.80	10.2	10.3	0.90	63.3	9.3
5	5-C	1.38	14.7	9.0	0.68	8.5	6.1
	5-D	0.83	5.0	12.5	0.90	9.4	11.3
	5-E	3.44	12.5	9.6	0.81	26.7	7.8
	6-A	1.22	5.0	12.5	0.95	14.5	11.9
	6-B	19.07	16.4	8.6	0.73	119.9	6.3
6	6-C	2.34	5.0	12.5	0.95	27.9	11.9
0	6-D	5.51	14.5	9.1	0.81	40.2	7.3
	6-E	0.88	5.0	12.5	0.95	10.5	11.9
	6-F	1.54	5.0	12.5	0.93	17.9	11.6
7	7-A	1.56	5.0	12.5	0.94	18.3	11.7
,	7-B	1.05	5.0	12.5	0.93	12.3	11.7

Table 20. Calculated 100-Year Peak Flow Rates for Sub-basins for Storm Drain Analysis

Table 21. Time of Concentration

Time of Concent	ration	1	-A	1-E	3	2-	A		2-B	3-A		3-B		3-C
Sheet Flow														
Manning's Roughness	r	1 0	.02	0.0	2	0.0	02		0.02	0.02		0.3		0.02
Sheet Flow Distance (ft) I		56	40		10	00		100	0		100		36
Land Slope (ft/ft)	S	s 0.	007	0.01	0	0.0	0.008		0.005	0.008	0	0.007		0.007
Travel Time (min)	1	۲ 1	.80	1.2	0	2.	72		3.28	0.00	2	5.04		1.27
Shallow Concentrate	ed Flow													
Length (ft)	I	2	0	309		39	91		547	0		94		0
Slope	S	5 O.	0.007		3	0.0)12		0.012	0.010	0	.010		0.010
n-r factor	r	1 20	20.33		3	20	.33		20.33	20.33	2	0.33		20.33
Time (min)	1	r (0.0	2.2		2	.9		4.1	0.0		0.8		0.0
Channel Flow														
Length (ft)	Length (ft) L		33	105	9	73	30		851	800	1	498		761
Velocity (fps)	v		4	4		4	ţ		4	4		4		4
Time (min)	1	r 2	2.2	4.4	ł	3.	.0		3.5	3.3		6.2		3.2
Total Travel Time (min) T	c 5	5.0	7.8	;	8	.7		10.9	5.0		32.1		5.0
	recentration Flow mess n ice (ft) L (ft) S													
Time of Concentra	ne of Concentration Sheet Flow ng's Roughness n ow Distance (ft) L		4-A 4-B 4-C 5-A 5-B		5-C		5-D		5-E					
Sheet Flow														
Manning's Roughness	n	0.02		0.3		0.3	0.3	}	0.3	0.3		0.02		0.3
Sheet Flow Distance (ft)	L	0		100		62	100)	34	93		56		100
Land Slope (ft/ft)	S	1.000)	0.030	0.030 0.		0.02	20	0.040	0.03	2 ().048		0.060
Travel Time (min)	Travel Time (min) T			13.99		7.91 16.		5	5.26	12.8	6	0.84		10.60
					<u> </u>									
Shallow Concentrated	I Flow	100		2.40	<u> </u>	2.42	50			100				100
Length (ft)	L	100		240		242	52		0.010	100		010		190
slope n r factor		20.33		20.33	20.33		20.3	10	20.33	20.3		0.010		20.33
Time (min)	<u>п</u> Т	20.55		1.0	4	13	20.3	,	20.35	20.3	, 1	0.0		0.7
		0.0		1.0		1.5	0.2		0.0	0.5		0.0		0.7
Channel Flow														
Length (ft)	L	0		665		138	138	1388 1185		1185 361		390	422	
Velocity (fps)	V	4		4		4	4 4		4	4		4	4 6	
Time (min)	Т	0.0		2.8		0.6	5.8	4.9		1.5		1.6		1.2
Total Travel Time (min)	Tc	5.0		17.8		9.7	22.	4	10.2	14.7	7	5.0		12.5
									1					
Time of Concentrati	on	6-A	6-B	6-0		6-D	6-]	E	6-F	7-A	7-B	15-A	<u> </u>	15-B
Sheet Flow		0.0	0.2			0.2	-		0.2	0.02	0.02	0.02	\rightarrow	0.02
Sheet Flow Distance (#)	n T	0.3	100	0.2	,	100	10))	10	50	50	50	-	50
Land Slope (ff/ff)	S	0.050	0.050	0.04	0	0.050	0.0	, 50	0,050	0.048	0.048	0.04	8	0.048
Travel Time (min)	T	0.00	11.40	0.0	0	11.40	1.8	1	1.81	0.76	0.76	0.76	;	0.76
Shallow Concentrated 1	Flow													
Length (ft)	L	0	68	0		323								
Slope	S	0.059	0.059	0.05	9	0.056	0.0	10	0.010	0.010	0.010	0.01)	0.010
n-r tactor	n	10.13	16.13	16.1	5	10.13	20.3	53 N	20.33	20.33	20.33	20.3	5	20.33
Time (mm)	1	0.0	0.3	0.0	,	1.4	0.0	U	0.0	0.0	0.0	0.0	\dashv	0.0
Channel Flow									-			+	+	
Length (ft)	L	0	1688	0		399	93	5	925	100	100	100		100
Velocity (fps)	V	6	6	6		4	6		6	4	4	4		4
Time (min)	Т	0.0	4.7	0.0)	1.7	2.0	6	2.6	0.4	0.4	0.4		0.4
Total Travel Time (min)	Tc	5.0	16.4	5.0)	14.5	5.0	0	5.0	5.0	5.0	5.0		5.0

APPENDIX D

Exhibit 3 – Drainage Area Map (1 of 2)

Exhibit 4 – Drainage Area Map (2 of 2)

Existing Conditions Autodesk Storm and Sewer Analysis Output

N N N N N N N N N N N N N N	EXHIBIT 3	DRAINAGE AREA MAP SHEET 1 OF 2
2 AINAGE AREA LABEL ODELED BY CAS) ZE IN ACRES AINAGE AREA LABEL ODELED BY COA)	SOUTH LAMAR TRANSPORTATION CORRIDOR STUDY	CAS CONSULTING & SERVICES INC 7908 CAMBEON RD AUSTIN, TEXAS 78734 REG. No. F-003572
AINAGE AREA DUNDARY	THIS EXHIBIT IS RELEASED FOR THE PURPOSES OF INTERIM REVIEW UNDER THE AUTHORITY OF MICHAEL C, MERWETHER	P.L. NO. JOJO THS DOCUMENT IS NOT INTENDED FOR BIDDING, PERMITTING AND/OR CONSTRUCTION PURPOSES
	CITY OF AUSTIN	

	0 400 800 SCALE IN FEET (SCALE BAR MEASURES 1" WHEN PLOTTED FULL SIZE)	EXHIBIT 4	DRAINAGE AREA MAP SHEET 2 OF 2
LABEL CAS) LABEL COA)		SOUTH LAMAR TRANSPORTATION CORRIDOR STUDY	CAS CONSULTING & SERVICES INC 7908 CAMBRON RD AUSTIN, TEXAS 78754 REG. No. F-003572
		THIS EXHIBIT IS RELEASED FOR THE PURPOSES OF INTERIM REVIEW UNDER THE AUTHORITY OF MICHEL C. MERWETHER	T-IS NOU JOBO April 16, 2015 FOR BIDDING, PERMITTING AND/OR CONSTRUCTION PURPOSES
		CITY OF AUSTIN	

Project Description

File Name	 System 1.SPF
Description	
	S. Lamar Corridor System 1
	S. Lamar Corridor System

Lamar from Panther to US 290 - west side

Node Summary

SN Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min	Time of	Total	Total Time
ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard	Peak	Flooded	Flooded
			Elevation	Elevation				Attained	Depth	Attained	Flooding		
									Volume	Attained	Occurrence		
		(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 Jun-01	Junction	694.00	697.00	0.00	0.00	0.00	2.69	694.68	0.00	2.32	0 00:00	0.00	0.00
2 Jun-02	Junction	693.00	701.00	0.00	0.00	0.00	5.13	694.02	0.00	6.98	0 00:00	0.00	0.00
3 Jun-03	Junction	692.10	702.50	0.00	0.00	0.00	8.02	702.50	0.00	0.00	0 00:28	37.30	1439.00
4 Jun-04	Junction	691.00	702.10	0.00	0.00	0.00	7.81	702.10	0.00	0.00	0 00:04	12.73	1438.00
5 Jun-05	Junction	690.00	702.40	0.00	0.00	0.00	8.92	702.40	0.00	0.00	0 00:35	15.90	1437.00
6 Out-01	Outfall	688.00					13.85	689.31					

Junction Input

	SN Element	Invert	Ground/Rim	Ground/Rim	Initial	Initial	Surcharge	Surcharge	Ponded	Minimum	
	ID	Elevation	(Max)	(Max)	Water	Water	Elevation	Depth	Area	Pipe	
			Elevation	Offset	Elevation	Depth				Cover	
_		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft ²)	(in)	_
_	1 Jun-01	694.00	697.00	3.00	0.00	-694.00	0.00	-697.00	0.00	0.00	
	2 Jun-02	693.00	701.00	8.00	0.00	-693.00	0.00	-701.00	0.00	0.00	
	3 Jun-03	692.10	702.50	10.40	0.00	-692.10	0.00	-702.50	0.00	0.00	
	4 Jun-04	691.00	702.10	11.10	0.00	-691.00	0.00	-702.10	0.00	0.00	
	5 Jun-05	690.00	702.40	12.40	0.00	-690.00	0.00	-702.40	0.00	0.00	

Junction Results

SN Element	Peak	Peak	Max HGL	Max HGL	Max	Min	Average HGL	Average HGL	Time of	Time of	Total	Total Time
ID	Inflow	Lateral	Elevation	Depth	Surcharge	Freeboard	Elevation	Depth	Max HGL	Peak	Flooded	Flooded
		Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding	Volume	
					Attained					Occurrence		
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)
1 Jun-01	2.69	2.69	694.68	0.68	0.00	2.32	694.68	0.68	0 00:00	0 00:00	0.00	0.00
2 Jun-02	5.13	2.44	694.02	1.02	0.00	6.98	694.02	1.02	0 00:26	0 00:00	0.00	0.00
3 Jun-03	8.02	2.89	702.50	10.40	0.00	0.00	702.49	10.39	0 00:02	0 00:28	37.30	1439.00
4 Jun-04	7.81	0.88	702.10	11.10	0.00	0.00	702.08	11.08	0 00:03	0 00:04	12.73	1438.00
5 Jun-05	8.92	1.80	702.40	12.40	0.00	0.00	702.37	12.37	0 00:04	0 00:35	15.90	1437.00

Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Pipe	Pipe	Pipe	Manning's	Initial	No. of
ID		Invert	Invert	Invert	Invert	Drop	Slope Shape	Diameter or	Width	Roughness	Flow	Barrels
		Elevation	Offset	Elevation	Offset			Height				
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(in)	(in)		(cfs)	
1 Link-01	323.89	694.00	0.00	693.00	0.00	1.00	0.3100 CIRCULAR	18.000	18.000	0.0120	0.00	1
2 Link-02	290.06	693.00	0.00	692.10	0.00	0.90	0.3100 CIRCULAR	18.000	18.000	0.0120	0.00	1
3 Link-03	342.39	692.10	0.00	691.00	0.00	1.10	0.3200 CIRCULAR	18.000	18.000	0.0120	0.00	1
4 Link-04	280.50	691.00	0.00	690.00	0.00	1.00	0.3600 CIRCULAR	18.000	18.000	0.0120	0.00	1
5 Link-05	380.89	690.00	0.00	688.00	0.00	2.00	0.5300 CIRCULAR	18.000	18.000	0.0120	0.00	1

Pipe Results

SN Element	Peak	Design Flow	Peak Flow/	Peak Flow	Peak Flow	Peak Flow Reported
ID	Flow	Capacity	Design Flow	Velocity	Depth	Depth/ Condition
			Ratio			Total Depth
						Ratio
	(cfs)	(cfs)		(ft/sec)	(ft)	
1 Link-01	2.69	6.32	0.43	3.43	0.68	0.46 Calculated
2 Link-02	5.13	6.34	0.81	3.99	1.02	0.68 Calculated
3 Link-03	6.93	6.45	1.07	3.99	1.50	1.00 SURCHARGED
4 Link-04	7.12	6.79	1.05	4.14	1.40	0.93 > CAPACITY
5 Link-05	8.65	8.25	1.05	5.03	1.40	0.94 > CAPACITY

Project Description

S. Lamar Corridor Study

System 2 from Panther Lane to US 290

Rainfall Details

Return Period	. 25 year(s)
Node Summary	

SN Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min	Time of	Total	Total Time
ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard	Peak Flo	oded	Flooded
			Elevation	Elevation				Attained	Depth	Attained	Flooding		
									Volume	Attained	Occurrence		
		(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 Jun-01	Junction	692.50	697.50	0.00	0.00	0.00	10.00	693.66	0.00	3.84	0 00:00	0.00	0.00
2 Jun-02	Junction	692.30	697.50	0.00	0.00	0.00	19.40	697.50	0.00	0.00	0 00:01	101.40	1441.00
3 Jun-03	Junction	691.35	699.00	0.00	0.00	0.00	31.74	699.00	0.00	0.00	0 00:01	145.19	1440.00
4 Jun-04	Junction	690.10	701.00	0.00	0.00	0.00	43.84	701.00	0.00	0.00	0 00:02	66.12	1440.00
5 Jun-05	Junction	688.60	702.50	0.00	0.00	0.00	60.53	691.68	0.00	10.82	0 00:00	0.00	0.00
6 Jun-06	Junction	687.30	703.00	0.00	0.00	0.00	81.03	690.66	0.00	12.34	0 00:00	0.00	0.00
7 Jun-07	Junction	685.30	702.50	0.00	0.00	0.00	101.03	688.26	0.00	14.24	0 00:00	0.00	0.00
8 Jun-08	Outfall	683.00					136.23	685.96					

Link Summary

SN Elemen	VElement Element From To (Outlet) Length In					Average D	Diameteror N	lanning's	Peak De	sign Flow Pea	k Flow/ Pea	ak Flow Pea	kFlow Pea	k Flow Tota	al Time Reported
ID	Туре	(Inlet) Node		Invert	Invert	rt Slope Height Roughness		Flow	Capacity De	esign Flow	Velocity	Depth	Depth/ S	urcharged Condition	
		Node		Elevation E	levation					Ratio			Тс	otal Depth	
														Ratio	
			(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		(min)
1 Link-01	Pipe	Jun-01 Jun-02	48.40	692.50	692.30	0.4100	24.000	0.0120	11.40	15.75	0.72	5.74	1.16	0.60	0.00 Calculated
2 Link-02	Pipe	Jun-02 Jun-03	143.18	692.30	691.85	0.3100	24.000	0.0120	13.74	13.74	1.00	4.37	2.00	1.00	1440.00 SURCHARGED
3 Link-03	Pipe	Jun-03 Jun-04	195.25	691.35	690.70	0.3300	30.000	0.0120	25.84	25.64	1.01	5.27	2.50	1.00	1439.00 SURCHARGED
4 Link-04	Pipe	Jun-04 Jun-05	312.74	690.10	689.10	0.3200	36.000	0.0120	42.53	40.86	1.04	6.21	2.79	0.93	0.00 > CAPACITY
5 Link-05	Pipe	Jun-05 Jun-06	258.31	688.60	687.80	0.3100	42.000	0.0120	60.53	60.66	1.00	7.19	2.86	0.82	0.00 Calculated
6 Link-06	Pipe	Jun-06 Jun-07	377.89	687.30	685.30	0.5300	48.000	0.0120	81.03	113.21	0.72	9.79	2.50	0.63	0.00 Calculated
7 Link-07	Pipe	Jun-07 Jun-08	439.01	685.30	683.00	0.5200	48.000	0.0120	101.03	112.64	0.90	10.13	2.96	0.74	0.00 Calculated

Junction Input

SN Element	Invert	Ground/Rim	Ground/Rim	Initial	Initial	Surcharge	Surcharge	Ponded	Minimum
ID	Elevation	(Max)	(Max)	Water	Water	Elevation	Depth	Area	Pipe
		Elevation	Offset	Elevation	Depth				Cover
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(in)
1 Jun-01	692.50	697.50	5.00	0.00	-692.50	0.00	-697.50	0.0	0 36.00
2 Jun-02	692.30	697.50	5.20	0.00	-692.30	0.00	-697.50	0.0	0 38.40
3 Jun-03	691.35	699.00	7.65	0.00	-691.35	0.00	-699.00	0.0	0 61.80
4 Jun-04	690.10	701.00	10.90	0.00	-690.10	0.00	-701.00	0.0	0 93.60
5 Jun-05	688.60	702.50	13.90	0.00	-688.60	0.00	-702.50	0.0	0 124.80
6 Jun-06	687.30	703.00	15.70	0.00	-687.30	0.00	-703.00	0.0	0 140.40
7 Jun-07	685.30	702.50	17.20	0.00	-685.30	0.00	-702.50	0.0	0 158.40

Junction Results

SN Element	Peak	Peak	Max HGL	Max HGL	Max	Min	Average HGL	Average HGL	Time of	Time of	Total	Total Time
ID	Inflow	Lateral	Elevation	Depth	Surcharge	Freeboard	Elevation	Depth	Max HGL	Peak	Flooded	Flooded
		Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding		
					Volume /	Attained				Occurrence		
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)
1 Jun-01	10.00	10.00	693.66	1.16	0.00	3.84	693.66	1.16	0 00:00	0 00:00	0.00	0.00
2 Jun-02	19.40	8.00	697.50	5.20	0.00	0.00	697.50	5.20	0 00:00	0 00:01	101.40	1441.00
3 Jun-03	31.74	18.00	699.00	7.65	0.00	0.00	699.00	7.65	0 00:01	0 00:01	145.19	1440.00
4 Jun-04	43.84	18.00	701.00	10.90	0.00	0.00	700.99	10.89	0 00:01	0 00:02	66.12	1440.00
5 Jun-05	60.53	18.00	691.68	3.08	0.00	10.82	691.68	3.08	0 00:21	0 00:00	0.00	0.00
6 Jun-06	81.03	20.50	690.66	3.36	0.00	12.34	690.66	3.36	0 00:21	0 00:00	0.00	0.00
7 Jun-07	101.03	20.00	688.26	2.96	0.00	14.24	688.26	2.96	0 00:21	0 00:00	0.00	0.00

Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total /	Average Pipe	Pipe	Pipe N	lanning's E	ntrance E	xit/Bend A	dditional I	nitial			
Flap		No. of	ID	Invert	Invert		Invert Invert Drop	Slope Shape	Diamete	ror Width	Roughnes	s Losse	s Losses		Losses	Flow Gate	Barre
		Elevation	Offset	Elevation	Offset			Height									
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(in)	(in)					(cfs)			
1 Link-01	48.40	692.50	0.00	692.30	0.00	0.20	0.4100 CIRCULAR	24.000 2	4.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1		
2 Link-02	143.18	692.30	0.00	691.85	0.50	0.45	0.3100 CIRCULAR	24.000 2	4.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1		
3 Link-03	195.25	691.35	0.00	690.70	0.60	0.65	0.3300 CIRCULAR	30.000 3	0.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1		
4 Link-04	312.74	690.10	0.00	689.10	0.50	1.00	0.3200 CIRCULAR	36.000 3	6.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1		
5 Link-05	258.31	688.60	0.00	687.80	0.50	0.80	0.3100 CIRCULAR	42.000 4	2.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1		
6 Link-06	377.89	687.30	0.00	685.30	0.00	2.00	0.5300 CIRCULAR	48.000 4	8.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1		
7 Link-07	439.01	685.30	0.00	683.00	0.00	2.30	0.5200 CIRCULAR	48.000 4	8.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1		

Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Froude Reported
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	/ Time	e Depth	Depth/ Su	rcharged Nu	mber Condition
	Occurrence			Ratio				Total Depth	ו	

								Ratio		
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 Link-01 2 Link-02	11.40 13.74	0 00:01 0 00:01	15.75 13.74	0.72 1.00	5.74 4.37	0.14 0.55	1.16 2.00	0.60 1.00	0.00 1440.00	Calculated SURCHARGED
3 Link-03	25.84	0 00:01	25.64	1.01	5.27	0.62	2.50	1.00	1439.00	SURCHARGED
4 Link-04	42.53	0 00:21	40.86	1.04	6.21	0.84	2.79	0.93	0.00	> CAPACITY
5 Link-05	60.53	0 00:21	60.66	1.00	7.19	0.60	2.86	0.82	0.00	Calculated
6 Link-06	81.03	0 00:21	113.21	0.72	9.79	0.64	2.50	0.63	0.00	Calculated
7 Link-07	101.03	0 00:22	112.64	0.90	10.13	0.72	2.96	0.74	0.00	Calculated

Project Description

Rainfall Details

Return Period...... 25 year(s)

Node Summary

SN Elemer	nt Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min	Time of	Total ⁻	Total Time
ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard	Peak F	looded	Flooded
			Elevation	Elevation				Attained	Depth	Attained	Flooding	Volume	
									Attained		Occurrence		
		(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min) 1
Jun-01	Junction	677.70	681.50	0.00	0.00	0.00	77.50	680.08	0.00	1.42	0 00:00	0.00	0.00
2 Jun-02	Junction	677.49	681.50	0.00	0.00	0.00	113.76	680.48	0.00	1.02	0 00:00	0.00	0.00
3 Jun-03	Junction	672.18	677.00	0.00	0.00	0.00	113.34	673.74	0.00	3.26	0 00:00	0.00	0.00
4 Jun-04	Outfall	669.92					113.86	671.49					

Link Summary

SN Element	N Element Element From To (Outlet) Leng				Outlet /	Average D	iameteror N	Manning's I	Peak De	sign Flow I	Peak Flow/ Pe	ak Flow Pea	kFlow Pea	k Flow Total	Time Reported
ID	Туре	(Inlet) Node		Invert	Invert	Slope	Height R	oughness	Flow	Capacity	Design Flow	Velocity	Depth	Depth/ Sur	charged Condition
		Node	l	Elevation E	levation						Ratio		To	otal Depth	
														Ratio	
			(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		(min)
1 Link-01	Pipe	Jun-01 Jun-02	54.57	677.70	677.49	0.3800	36.000	0.0120	85.16	83.18	1.02	8.14	2.38	0.90	0.00 > CAPACIT Y
2 Link-02	Pipe	Jun-02 Jun-03	208.30	677.49	672.18	2.5500	36.000	0.01201	13.34	214.09	0.53	18.10	1.49	0.52	0.00 Calculated
3 Link-03	Pipe	Jun-03 Jun-04	88.68	672.18	669.92	2.5500	36.000	0.01201	13.86	214.06	0.53	18.45	1.49	0.51	0.00 Calculated
2 Link-02 3 Link-03	Pipe Pipe	Jun-02 Jun-03 Jun-03 Jun-04	208.30 88.68	677.49 672.18	672.18 669.92	2.5500 2.5500	36.000 36.000	0.01201 0.01201	13.34 13.86	214.09 214.06	0.53 0.53	18.10 18.45	1.49 1.49	0.52 0.51	0.00 Calculated 0.00 Calculated

Junction Input

SN Element ID	Invert Elevation	Ground/Rim (Max)	Ground/Rim (Max)	Initial Water	Initial Water	Surcharge Elevation	Surcharge Depth	Ponded Area	Minimum Pipe
		Elevation	Offset	Elevation	Depth				Cover
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft ²)	(in)
1 Jun-01	677.70	681.50	3.80	0.00	-677.70	0.00	-681.50	0.00	
									9.60
2 Jun-02	677.49	681.50	4.01	0.00	-677.49	0.00	-681.50	0.00	12.12
3 Jun-03	672.18	677.00	4.82	0.00	-672.18	0.00	-677.00	0.00	21.84

Junction Results

SN Element ID	Peak Inflow	Peak Lateral Inflow	Max HGL Elevation Attained	Max HGL Depth Attained	Max Surcharge Depth	Min Freeboard Attained	Average HGL Elevation Attained	Average HGL Depth Attained	Time of Max HGL Occurrence	Time of Peak Flooding	Total Flooded Volume	Total Time Flooded
					Attained					Occurrence		
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)
1 Jun-01	77.50	77.50	680.08	2.38	0.00	1.42	680.08	2.38	0 00:00	0 00:00	0.00	0.00
2 Jun-02	113.76	28.60	680.48	2.99	0.00	1.02	679.87	2.38	0 00:01	0 00:00	0.00	0.00
3 Jun-03	113.34	0.00	673.74	1.56	0.00	3.26	673.67	1.49	0 00:01	0 00:00	0.00	0.00

Pipe Input

SN Element Lengt	n Inlet Inlet	Outlet Outlet Tot	al Average Pipe	Pipe Pip	e Manning's	s Entrance E	kit/Bend Additional	Initial
Flap	No. of ID	Invert Invert	Invert Invert Drop	Slope Shape Dia	meter or Wi	dth Roughnes	s Losses Losses	Barrels
	Elevation Offse	t Elevation Offset		Height				
(ft)	(ft) (ft)	(ft) (ft) (ft)	(%)	(in) (in)			(cfs))
1 Link-01 54.57	677.70 0.00	677.49 0.00 0.21	0.3800 Rectangular	36.000 48.000	0.0120	0.5000 0	.5000 0.0000	0.00 No 1
2 Link-02 208.30	677.49 0.00	672.18 0.00 5.31	2.5500 Rectangular	36.000 48.000	0.0120	0.5000 0	.5000 0.0000	0.00 No 1
3 Link-03 88.68	672.18 0.00	669.92 0.00 2.26	2.5500 Rectangular	36.000 48.000	0.0120	0.5000 0	.5000 0.0000	0.00 No 1

Pipe Results

	SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Froude Reported
	ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Number Condition
			Occurrence		Ratio				Total Depth		
									Ratio		
		(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
_	1 Link-01	85.16	0 00:01	83.18	1.02	8.14	0.11	2.38	0.90	0.00	> CAPACITY
	2 Link-02	113.34	0 00:01	214.09	0.53	18.10	0.19	1.49	0.52	0.00	Calculated
	3 Link-03	113.86	0 00:01	214.06	0.53	18.45	0.08	1.49	0.51	0.00	Calculated

Project Description

File Name System 4.SPF Description

S. Lamar from Westforest to Barton Skyway

Rainfall Details

Return Period...... 2 year(s)

Node Summary

SN Element	Element	Invert (Ground/Rim	Initial S	urcharge F	Ponded F	Peak N	1ax HGL	Max	Min	Time of	Total 7	Fotal Time
ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard	Peak	Flooded	Flooded
			Elevation E	levation				Attained	Depth	Attained	Flooding	Volume	
									Attained		Occurrence		
		(ft)	(ft)	(ft)	(ft) (ft²)	(cfs)	(ft) (ft	:) (ft)	(days hh:mm) (ac-in)	(min)
1 Jun-01	Junction	659.70	665.50	0.00	0.00	0.00	48.70	665.50) 0.0	0.00	0 00:2	1 356.77	1441.00
2 Jun-02	Junction	660.00	665.00	0.00	0.00	0.00	14.40	661.30) 0.0	0 3.70	0 00:0	0.00	0.00
3 Jun-03	Junction	658.30	664.00	0.00	0.00	0.00	33.71	664.00	0.0	0.00	0 00:0	1 175.36	1440.00
4 Jun-04	Junction	657.72	663.00	0.00	0.00	0.00	26.34	659.97	0.0	0 3.03	0 00:0	0.00	0.00
5 Jun-05	Junction	654.00	661.00	0.00	0.00	0.00	26.64	661.00	0.0	0.00	0 00:0	0.00	0.00
6 Jun-06	Junction	665.00	668.00	0.00	0.00	0.00	3.20	665.56	6 0.0	0 2.44	0 00:0	0.00	0.00

Link Summary

SN Elemen	SN Element Element From To (Outlet) Length		Length	Inlet	Outlet /	Average D	Diameteror N	lanning's Peak De	esign Flow Pea	k Flow/ Pea	ak Flow Pea	kFlow Pea	k Flow Tota	al Time Reported
ID	Туре	(Inlet) Node		Invert	Invert	Slope Height Roughness Flow		Capacity De	sign Flow	Velocity	Depth	Depth/ S	urcharged Condition	
		Node		Elevation E	levation					Ratio		To	otal Depth	
											R		Ratio	
			(ft)	(ft)	(ft)	(%)	(in)	(cfs)	(cfs)		(ft/sec)	(ft)		(min)
1 Link-01	Pipe	Jun-06 Jun-01	436.67	665.00	659.70	1.2100	15.000	0.0120 3.20	7.71	0.42	5.99	0.56	0.45	0.00 Calculated
2 Link-02	Pipe	Jun-01 Jun-03	243.28	659.70	658.30	0.5800	30.000	0.0120 33.71	33.71	1.00	6.87	2.50	1.00	1440.00 SURCHARGED
3 Link-03	Pipe	Jun-03 Jun-04	94.11	658.30	657.72	0.6200	27.000	0.0120 26.34	26.34	1.00	6.62	2.25	1.00	1440.00 SURCHARGED
4 Link-04	Pipe	Jun-04 Jun-05	160.96	657.72	654.00	2.3100	24.000	0.0120 26.64	37.26	0.72	12.94	1.24	0.62	0.00 Calculated
5 Link-05	Pipe	Jun-02 Jun-01	70.09	660.00	659.70	0.4300	24.000	0.0120 16.24	20.41	0.80	5.95	1.30	0.68	0.00 Calculated

Junction Input

S	N Element	Invert Ground/R	im Ground	l/Rim	Initial	Initial Sur	charge Surd	harge Po	nded Mir	nimum ID
	Elevation	(Max)	(Max)	Water	Water	Elevation	Depth	Area	Pipe	Elevation
				Offset	Elevation	Depth				Cover
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(in)
1 Jun-01	659.70	665.50	5.80	0.00 -6	59.70	0.00	-665.50	0.00	39.60	
2 Jun-02	660.00	665.00	5.00	0.00 -66	60.00	0.00	-665.00	0.00	36.00	
3 Jun-03	658.30	664.00	5.70	0.00 -6	58.30	0.00	-664.00	0.00	38.40	
4 Jun-04	657.72	663.00	5.28	0.00 -6	57.72	0.00	-663.00	0.00	36.36	
5 Jun-05	654.00	661.00	7.00	0.00 -6	54.00	0.00	-661.00	0.00	60.00	
6 Jun-06	665.00	668.00	3.00	0.00 -66	65.00	0.00	-668.00	0.00	21.00	

Junction Results

SN Element	Peak	Peak	Max HGL	Max HGL	Max	Min	Average HGL	Average HGL	Time of	Time of	Total	Total Time	ID
	Inflow	Lateral	Elevation	Depth	Surcharge	Freeboard	Elevation	Depth	Max HGL	Peak	Flooded	Flooded	
		Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding	Volume	Attained	
								Occurren	ice				
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)	
1 Jun-01	48.70	31.10	665.50	5.80	0.00	0.00	665.50	5.80	0 00:00	0 00:21	356.77	1441.00	-
2 Jun-02	14.40	14.40	661.30	1.30	0.00	3.70	661.30	1.30	0 00:00	0 00:00	0.00	0.00	
3 Jun-03	33.71	0.00	664.00	5.70	0.00	0.00	664.00	5.70	0 00:01	0 00:01	175.36	1440.00	
4 Jun-04	26.34	0.00	659.97	2.25	0.00	3.03	659.97	2.25	0 00:01	0 00:00	0.00	0.00	
5 Jun-05	26.64	0.00	661.00	7.00	0.00	0.00	661.00	7.00	0 00:00	0 00:00	0.00	0.00	
6 Jun-06	3.20	3.20	665.56	0.56	0.00	2.44	665.56	0.56	0 00:00	0 00:00	0.00	0.00	

Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial Flap	No. of
ID		Invert	Invert	Invert	Invert	Drop	Slope Shape	Diameter or	Width	Roughness	Losses	Losses	Losses	Flow Gate	Barrels
		Elevation	Offset	Elevation	Offset			Height							
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(in)	(in)					(cfs)	
1 Link-01	436.67	665.00	0.00	659.70	0.00	5.30	1.2100 CIRCULAR	15.000	15.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
2 Link-02	243.28	659.70	0.00	658.30	0.00	1.40	0.5800 CIRCULAR	30.000	30.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
3 Link-03	94.11	658.30	0.00	657.72	0.00	0.58	0.6200 CIRCULAR	27.000	27.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
4 Link-04	160.96	657.72	0.00	654.00	0.00	3.72	2.3100 CIRCULAR	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
5 Link-05	70.09	660.00	0.00	659.70	0.00	0.30	0.4300 Rectangular	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1

Pipe Results

SN Element ID	Peak Flow	Time of Peak Flow Occurrence	Design Flow Capacity	Peak Flow/ Design Flow Ratio	Peak Flow Velocity	Travel Time	Peak Flow Depth	Peak Flow Depth/ Total Depth Ratio	Total Time Surcharged	Froude Reported Number Condition
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 Link-01	3.20	0 00:21	7.71	0.42	5.99	1.21	0.56	0.45	0.00	Calculated
2 Link-02	33.71	0 00:01	33.71	1.00	6.87	0.59	2.50	1.00	1440.00	SURCHARGED
3 Link-03	26.34	0 00:01	26.34	1.00	6.62	0.24	2.25	1.00	1440.00	SURCHARGED
4 Link-04	26.64	0 00:01	37.26	0.72	12.94	0.21	1.24	0.62	0.00	Calculated
5 Link-05	16.24	0 00:01	20.41	0.80	5.95	0.20	1.30	0.68	0.00	Calculated

Project Description

File Name	 System 5.SPF
Description	
	S. Lamar from La Casa to Bluebonnet System 5

Node Summary

SN Element ID	Element Type	Invert Elevation	Ground/Rim (Max) Elevation	Initial Water Elevation	Surcharge Elevatior	Ponded Area	Peak a Inflov	Max HGL v Elevation Attained	Max Surcharge Depth	Min Freeboard Attained	Time of Peak Flooding	Total Flooded Volume	Total Time Flooded
									Attained		Occurrence		
		(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 Jun-01	Junction	643.00	647.00	0.00	0.00	0.00	36.00	647.00	0.00	0.00	0 00:01	307.26	1441.00
2 Jun-02	Junction	639.69	643.50	0.00	0.00	0.00	68.09	643.50	0.00	0.00	0 00:01	1072.34	1441.00
3 Jun-03	Junction	637.36	642.00	0.00	0.00	0.00	29.68	639.57	0.00	2.43	0 00:00	0.00	0.00
4 Jun-04	Junction	628.40	634.00	0.00	0.00	0.00	34.37	629.62	0.00	4.38	0 00:00	0.00	0.00
5 Jun-05	Junction	617.51	626.00	0.00	0.00	0.00	38.03	622.15	0.00	3.85	0 00:00	0.00	0.00
6 Jun-06	Junction	614.72	619.00	0.00	0.00	0.00	55.43	616.11	0.00	2.89	0 00:00	0.00	0.00
7 Jun-07	Junction	619.00	625.00	0.00	0.00	0.00	18.30	619.38	0.00	5.62	0 00:00	0.00	0.00
8 Jun-08	Junction	640.00	647.00	0.00	0.00	0.00	5.80	640.22	0.00	6.78	0 00:00	0.00	0.00
9 Out-01	Outfall	609.88					56.75	611.29					

Junction Input

SN Element	Invert G	round/Rim Gro	und/Rim	Initial Initia	al Suro	charge S	Surcharge F	onded	Minimum ID	Elevation
	(Max) (N	lax) Water	Water	Elevation			Depth	Ai	rea Pipe	e Elevation
				Offset Ele	vation	Depth				Cover
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft) (ft ²)	(in)
1 Jun-01	643.00	647.00	4.00	0.00 -643.00)	0.00	-647.00	0.00	30.00	
2 Jun-02	639.69	643.50	3.81	0.00 -639.69)	0.00	-643.50	0.00	27.72	
3 Jun-03	637.36	642.00	4.64	0.00 -637.36	;	0.00	-642.00	0.00	29.16	
4 Jun-04	628.40	634.00	5.60	0.00 -628.40)	0.00	-634.00	0.00	43.20	
5 Jun-05	617.51	626.00	8.49	0.00 -617.51		0.00	-626.00	0.00	36.96	
6 Jun-06	614.72	619.00	4.28	0.00 -614.72	2	0.00	-619.00	0.00	21.36	
7 Jun-07	619.00	625.00	6.00	0.00 -619.00)	0.00	-625.00	0.00	54.00	
8 Jun-08	640.00	647.00	7.00	0.00 -640.00)	0.00	-647.00	0.00	66.00	

Junction Results

SN Elemen	t Peak Inflow	Peak Lateral	Max HGL Elevation	Max HGL Depth	Max Surcharge	Min Freeboard	Average HGL Elevation	Average HGL Depth	Time of Max HGI	Time of Peak	Total Flooded	Total Time Flooded	ID
		Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding	Volume	Attained	
								Occurre	nce				
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)	1 Jun-01
36.00 3	6.00	647.0	0 4.00	0.00	0.00	647.0	00 4.00	0 00	0:00 0 00:0	1 307.26		1441.00	
2 Jun-02	68.09	45.00	643.50	3.81	0.00	0.00	643.50	3.81	0 00:00	0 00:01	1072.34	1441.00	
3 Jun-03	29.68	0.00	639.57	2.21	0.00	2.43	639.57	2.21	0 00:00	0 00:00	0.00	0.00	
4 Jun-04	34.37	3.40	629.62	1.22	0.00	4.38	629.57	1.17	0 00:0	1 0 00:00	0.00	0.00	
5 Jun-05	38.03	3.40	622.15	4.64	0.00	3.85	622.09	4.58	0 00:0	1 0 00:00	0.00	0.00	
6 Jun-06	55.43	0.00	616.11	1.39	0.00	2.89	616.09	1.37	0 00:0	1 0 00:00	0.00	0.00	
7 Jun-07	18.30	18.30	619.38	0.38	0.00	5.62	619.38	0.38	0 00:00	0 00:00	0.00	0.00	
8 Jun-08	5.80	5.80	640.22	0.22	0.00	6.78	640.22	0.22	0 00:00	0 00:00	0.00	0.00	

Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial Flap	No. of
ID		Invert	Invert	Invert	Invert	Drop	Slope Shape	Diameter or	Width	Roughness	Losses	Losses	Losses	Flow Gate	Barrels
		Elevation	Offset	Elevation	Offset			Height							
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(in)	(in)					(cfs)	
1 Link-01	80.38	643.00	0.00	639.69	0.00	3.31	4.1200 CIRCULAR	18.000	18.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
2 Link-02	39.50	639.69	0.00	638.07	0.71	1.62	4.1000 CIRCULAR	18.000	18.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
3 Link-03	217.80	637.36	0.00	628.40	0.00	8.96	4.1100 CIRCULAR	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
4 Link-04	182.16	628.40	0.00	620.92	3.41	7.48	4.1100 CIRCULAR	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
5 Link-05	53.59	617.51	0.00	614.72	0.00	2.79	5.2100 CIRCULAR	30.000	30.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
6 Link-06	109.98	614.72	0.00	609.88	0.00	4.84	4.4000 CIRCULAR	30.000	30.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
7 Link-07	100.33	619.00	0.00	614.72	0.00	4.28	4.2700 Rectangular	18.000	48.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
8 Link-08	100.31	640.00	0.00	637.36	0.00	2.64	2.6300 Rectangular	18.000	48.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1

Pipe Results

SN Element ID	Peak Flow	Time of Peak Flow Occurrence	Design Flow Capacity	Peak Flow/ Design Flow Ratio	Peak Flow Velocity	Travel Time	Peak Flow Depth	Peak Flow Depth/ Surd Total Depth Ratio	Total Time charged Num	Froude Reported ber Condition
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 Link-01	23.09	0 00:00	23.09	1.00	13.07	0.10	1.50	1.00	1441.00	SURCHARGED
2 Link-02	23.05	0 00:00	23.05	1.00	13.04	0.05	1.50	1.00	1441.00	SURCHARGED
3 Link-03	30.97	0 00:01	49.71	0.62	16.95	0.21	1.09	0.56	0.00	Calculated
4 Link-04	34.63	0 00:01	49.66	0.70	17.57	0.17	1.17	0.60	0.00	Calculated
5 Link-05	38.33	0 00:01	101.39	0.38	19.26	0.05	1.02	0.43	0.00	Calculated
6 Link-06	56.75	0 00:01	93.22	0.61	20.08	0.09	1.37	0.56	0.00	Calculated
7 Link-07	21.18	0 00:01	102.45	0.21	13.21	0.13	0.38	0.27	0.00	Calculated
8 Link-08	6.63	0 00:01	80.47	0.08	7.38	0.23	0.22	0.15	0.00	Calculated

Project Description File Name System 6.SPF Description

S. Lamar from Del Curto to Kinney

Rainfall Details

Return Period...... 25 year(s)ode Summary

SN Element ID	Element Type	Invert Elevation	Ground/Rim (Max)	Initial Water	Surcharge Elevation	Peak Inflow	Max HGL Elevation	Max Surcharge	Min Freeboard	Time of Peak	Total Flooded	Total Time Flooded
			Elevation	Elevation			Attained	Depth Attained	Attained	Flooding	volume	
		(ft)	(ft)	(ft)	(ft)	(cfs)	(ft)	(ft)	(ft)	(davs hh:mm)	(ac-in)	(min)
1 Jun-01	Junction	600.00	605.00	0.00	0.00	91.90	605.00	0.00	0.00	0 00:01	331.59	1441.00
2 Jun-02	Junction	596.20	601.00	0.00	0.00	77.97	601.00	0.00	0.00	0 00:01	206.43	1440.00
3 Jun-03	Junction	592.10	597.00	0.00	0.00	93.82	597.00	0.00	0.00	0 00:02	482.99	1440.00
4 Jun-04	Junction	589.38	594.00	0.00	0.00	100.76	594.00	0.00	0.00	0 00:01	649.25	1440.00
5 Jun-05	Junction	586.20	590.00	0.00	0.00	69.42	590.00	0.00	0.00	0 00:01	567.12	1440.00
6 Jun-06	Junction	584.90	589.00	0.00	0.00	54.98	589.00	0.00	0.00	0 00:01	168.63	1440.00
7 Jun-07	Junction	584.47	588.00	0.00	0.00	47.73	588.00	0.00	0.00	0 00:01	377.91	1440.00
8 Jun-08	Junction	584.32	588.00	0.00	0.00	44.32	585.82	0.00	2.18	0 00:00	0.00	0.00
9 Out-01	Outfall	579.50				44.35	580.62					

System 6

S. Lamar from Del Curto to Kinney

Link Summary

SN Elemen	t Elemen	t From To (Outlet)	Inlet	Outlet /	Average D	iameteror N	/lanning's Peak De	sign Flow Pea	ak Flow/ Pe	ak Flow Pea	kFlow Pea	k Flow Tota	al Time Reported	
ID	Туре	(Inlet) Node		Invert	Invert	Slope	Height R	oughness Flow	Capacity De	esign Flow	Velocity	Depth	Depth/ Si	urcharged Condition
		Node	I	Elevation E	levation					Ratio		To	otal Depth	
			(ft)	(ft)	(ft)	(%)	(in)	(cfs)	(cfs)		(ft/sec)	(ft)	Ratio	(min)
1 Link-01	Pipe	Jun-01 Jun-02	150.17	600.00	596.20	2.5300	24.000	0.0120 77.97	77.97	1.00	12.41	2.00	1.00	1440.00 SURCHARGED
2 Link-02	Pipe	Jun-02 Jun-03	205.13	596.20	592.10	2.0000	24.000	0.0120 73.52	69.30	1.06	11.76	2.00	1.00	1439.00 SURCHARGED
3 Link-03	Pipe	Jun-03 Jun-04	136.07	592.10	589.38	2.0000	24.000	0.0120 73.36	69.30	1.06	11.73	2.00	1.00	1440.00 SURCHARGED
4 Link-04	Pipe	Jun-04 Jun-05	158.54	589.38	586.20	2.0100	24.000	0.0120 69.42	69.42	1.00	11.05	2.00	1.00	1440.00 SURCHARGED
5 Link-05	Pipe	Jun-05 Jun-06	150.29	586.20	584.90	0.8600	24.000	0.0120 46.28	45.59	1.02	7.67	2.00	1.00	1440.00 SURCHARGED
6 Link-06	Pipe	Jun-06 Jun-07	46.37	584.90	584.47	0.9300	24.000	0.0120 47.73	47.20	1.01	7.92	2.00	1.00	1440.00 SURCHARGED
7 Link-07	Pipe	Jun-07 Jun-08	96.12	584.47	584.32	0.1600	18.000	0.0120 31.32	31.32	1.00	3.48	1.50	1.00	1440.00 SURCHARGED
8 Link-08	Pipe	Jun-08 Out-01	141.87	584.32	579.50	3.4000	42.000	0.0120 44.35	200.90	0.22	16.77	1.12	0.32	0.00 Calculated

Junction Input

SN Element	Invert	Ground/Rim	Ground/Rim	Initia	Initial	Surcharge	Surcharge	Ponded	Minimum
ID	Elevation	(Max)	(Max)	Water	Water	Elevation	Depth	Area	Pipe
		Elevation	Offset	Elevation	Depth				Cover
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft ²)	(in)
1 Jun-01	600.00	605.00	5.00	0.00	-600.00	0.00	-605.00	0.00	36.00
2 Jun-02	596.20	601.00	4.80	0.00	-596.20	0.00	-601.00	0.00	33.60
3 Jun-03	592.10	597.00	4.90	0.00	-592.10	0.00	-597.00	0.00	34.80
4 Jun-04	589.38	594.00	4.62	0.00	-589.38	0.00	-594.00	0.00	31.44
5 Jun-05	586.20	590.00	3.80	0.00	-586.20	0.00	-590.00	0.00	21.60
6 Jun-06	584.90	589.00	4.10	0.00	-584.90	0.00	-589.00	0.00	25.20
7 Jun-07	584.47	588.00	3.53	0.00	-584.47	0.00	-588.00	0.00	18.36
8 Jun-08	584.32	588.00	3.68	0.00	-584.32	0.00	-588.00	0.00	2.16

Junction Results

SN Element	Peak	Peak	Max HGL	Max HGL	Max	Min	Average HGL	Average HGL	Time of	Time of	Total	Total Time
ID	Inflow	Lateral	Elevation	Depth	Surcharge	Freeboard	Elevation	Depth	Max HGL	Peak	Flooded	Flooded
		Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding		
					Volume A	Attained				Occurrence		
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)
1 Jun-01	91.90	91.90	605.00	5.00	0.00	0.00	605.00	5.00	0 00:00	0 00:01	331.59	1441.00
2 Jun-02	77.97	0.00	601.00	4.80	0.00	0.00	601.00	4.80	0 00:01	0 00:01	206.43	1440.00
3 Jun-03	93.82	20.30	597.00	4.90	0.00	0.00	597.00	4.90	0 00:01	0 00:02	482.99	1440.00
4 Jun-04	100.76	27.40	594.00	4.62	0.00	0.00	594.00	4.62	0 00:01	0 00:01	649.25	1440.00
5 Jun-05	69.42	0.00	590.00	3.80	0.00	0.00	590.00	3.80	0 00:01	0 00:01	567.12	1440.00
6 Jun-06	54.98	8.70	589.00	4.10	0.00	0.00	589.00	4.10	0 00:01	0 00:01	168.63	1440.00
7 Jun-07	47.73	0.00	588.00	3.53	0.00	0.00	588.00	3.53	0 00:01	0 00:01	377.91	1440.00
8 Jun-08	44.32	13.00	585.82	1.50	0.00	2.18	585.82	1.50	0 00:01	0 00:00	0.00	0.00

Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total .	Average F	Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend A	dditional I	nitial	
Flap		No. of	ID	Invert	Invert		Invert	Invert Drop	Slope Shape	e Diam	neter or Wic	th Roughn	ess Losse	s Losses		Barrels
		Elevation	Offset	Elevation	Offset				Height							
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)		(in)	(in)					(cfs)	
1 Link-01	150.17	600.00	0.00	596.20	0.00	3.80	2.5300	CIRCULAR	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	2
2 Link-02	205.13	596.20	0.00	592.10	0.00	4.10	2.0000	CIRCULAR	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	2
3 Link-03	136.07	592.10	0.00	589.38	0.00	2.72	2.0000	CIRCULAR	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	2
4 Link-04	158.54	589.38	0.00	586.20	0.00	3.18	2.0100	CIRCULAR	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	2
5 Link-05	150.29	586.20	0.00	584.90	0.00	1.30	0.8600	CIRCULAR	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	2
6 Link-06	46.37	584.90	0.00	584.47	0.00	0.43	0.9300	CIRCULAR	24.000	24.000	0.0120	0.5000	0.5000	0.0000	0.00 No	2
7 Link-07	96.12	584.47	0.00	584.32	0.00	0.15	0.1600	Rectangular	18.000	72.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
8 Link-08	141.87	584.32	0.00	579.50	0.00	4.82	3.4000	CIRCULAR	42.000	42.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1

Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Froude Reported
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/ Sur	charged Num	ber Condition
		Occurrence		Ratio				Total Depth		
								Ratio		
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 Link-01	77.97	0 00:01	77.97	1.00	12.41	0.20	2.00	1.00	1440.00	SURCHARGED
2 Link-02	73.52	0 00:01	69.30	1.06	11.76	0.29	2.00	1.00	1439.00	SURCHARGED
3 Link-03	73.36	0 00:01	69.30	1.06	11.73	0.19	2.00	1.00	1440.00	SURCHARGED
4 Link-04	69.42	0 00:01	69.42	1.00	11.05	0.24	2.00	1.00	1440.00	SURCHARGED
5 Link-05	46.28	0 00:01	45.59	1.02	7.67	0.33	2.00	1.00	1440.00	SURCHARGED
6 Link-06	47.73	0 00:01	47.20	1.01	7.92	0.10	2.00	1.00	1440.00	SURCHARGED
7 Link-07	31.32	0 00:01	31.32	1.00	3.48	0.46	1.50	1.00	1440.00	SURCHARGED
8 Link-08	44.35	0 00:02	200.90	0.22	16.77	0.14	1.12	0.32	0.00	Calculated

Project Description

File Name	 System 15.SPF
Description	
	S. Lamar Corridor System 15

Rainfall Details

Return Period 25 y	ear(s)
--------------------	--------

Node Summary

SN Elemer	t Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min	Time of	Total	Total Time
ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard	Peak	Flooded	Flooded
			Elevation	Elevation				Attained	Depth	Attained	Flooding		
									Volume	Attained	Occurrence		
		(ft)	(ft)	(ft)	(ft)	(ft ²)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 Jun-06	Junction	450.00	454.00	0.00	0.00	0.00	8.00	450.93	0.00	3.07	0 00:00	0.00	0.00
2 Jun-07	Junction	449.39	454.00	0.00	0.00	0.00	9.11	450.41	0.00	3.59	0 00:00	0.00	0.00
3 Jun-08	Junction	449.12	454.10	0.00	0.00	0.00	8.97	450.15	0.00	3.95	0 00:00	0.00	0.00
4 Jun-09	Junction	448.98	454.10	0.00	0.00	0.00	18.48	454.10	0.00	0.00	0 00:01	0.00	1.00
5 Out-02	Outfall	443.00					18.72	444.29					

Link Summary

	SN Element	Element	From To (Outlet) L	_ength	Inlet	Outlet A	Average D	iameteror	Manning's	Peak D	Design Flow	Peak Flow/ Pea	ak Flow Pea	ak Flow Pea	k Flow Total	Time Reported
	ID	Туре	(Inlet) Node		Invert	Invert	Slope	Height F	Roughness	Flow	Capacity	Design Flow	Velocity	Depth	Depth/ Sur	rcharged Condition
Node		Node		Elevation E	levation						Ratio		To	tal Depth Ratio		
				(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		(min)
	1 Link-06	Pipe	Jun-06 Jun-07	61.10	450.00	449.39	1.0000	18.000	0.0120	9.11	11.37	0.80	7.52	0.93	0.65	0.00 Calculated
	2 Link-07	Pipe	Jun-07 Jun-08	27.30	449.39	449.12	0.9900	18.000	0.0120	8.97	11.32	0.79	7.06	0.93	0.68	0.00 Calculated
	3 Link-08	Pipe	Jun-08 Jun-09	15.02	449.12	448.98	0.9300	18.000	0.0120	8.78	10.99	0.80	6.87	0.95	0.68	0.00 Calculated
	4 Link-09	Pipe	Jun-09 Out-02	238.08	448.98	443.00	2.5100	18.000	0.0120	18.72	18.04	1.04	11.89	1.21	0.84	0.00 > CAPACITY

Junction Input

SN Element	Invert	Ground/Rim	Ground/Rim	Initial	Initial	Surcharge	Surcharge	Ponded	Minimum
ID	Elevation	(Max)	(Max)	Water	Water	Elevation	Depth	Area	Pipe
		Elevation	Offset	Elevation	Depth				Cover
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft ²)	(in) 1
Jun-06	450.00	454.00	4.00	0.00	-450.00	0.00	-454.00	0.00	30.00
2 Jun-07	449.39	454.00	4.61	0.00	-449.39	0.00	-454.00	0.00	37.32
3 Jun-08	449.12	454.10	4.98	0.00	-449.12	0.00	-454.10	0.00	41.76
4 Jun-09	448.98	454.10	5.12	0.00	-448.98	0.00	-454.10	0.00	43.44

Junction Results

SN Element	Peak	Peak	Max HGL	Max HGL	Max	Min	Average HGL	Average HGL	Time of	Time of	Total	Total Time
ID	Inflow	Lateral	Elevation	Depth	Surcharge	Freeboard	Elevation	Depth	Max HGL	Peak	Flooded	Flooded
		Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding	Volume	
					Attained					Occurrence		
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)
1 Jun-06	8.00	8.00	450.93	0.93	0.00	3.07	450.93	0.93	0 00:00	0 00:00	0.00	0.00
2 Jun-07	9.11	0.00	450.41	1.02	0.00	3.59	450.32	0.93	0 00:01	0 00:00	0.00	0.00
3 Jun-08	8.97	0.00	450.15	1.03	0.00	3.95	450.07	0.95	0 00:01	0 00:00	0.00	0.00
4 Jun-09	18.48	9.70	454.10	5.12	0.00	0.00	450.19	1.21	0 00:01	0 00:01	0.00	1.00

Pipe Input

SN Elemen	t Length	Inlet In	let Outle	et Outlet Tota	al Average Pipe	Pipe	Pipe Manni	ng's Entrance	e Exit/Bend	Additional Initial	
Flap		No. of IE) Invei	t Invert	Invert Invert Dro	op Slope Shape	Diameter or	Width Rough	nness Los	sses Losses	Barrels
		Elevation Of	fset Elevation	n Offset		Height					
	(ft)	(ft) (ft)	(ft)	(ft) (ft)	(%)	(in) (in)				(cfs)	
1 Link-06	61.10	450.00 0.0	0 449.39	0.00 0.61	1.0000 CIRCULAR	18.000 18.00	00 0.012	0.5000	0.5000	0.0000 0.00 No	1
2 Link-07	27.30	449.39 0.0	0 449.12	0.00 0.27	0.9900 CIRCULAR	18.000 18.00	00 0.012	0.5000	0.5000	0.0000 0.00 No	1
3 Link-08	15.02	449.12 0.0	0 448.98	0.00 0.14	0.9300 CIRCULAR	18.000 18.00	00 0.012	0.5000	0.5000	0.0000 0.00 No	1
4 Link-09	238.08	448.98 0.0	0 443.00	0.00 5.98	2.5100 CIRCULAR	18.000 18.00	00 0.012	0.5000	0.5000	0.0000 0.00 No	1

Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow 7	Fravel	Peak Flow	Peak Flow	Total Time	Froude R	eported
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Number (Condition
		Occurrence		Ratio				Total Depth			
								Ratio			
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)		
1 Link-06	9.11	0 00:01	11.37	0.80	7.52	0.14	0.93	0.65	0.00		Calculated
2 Link-07	8.97	0 00:01	11.32	0.79	7.06	0.06	0.93	0.68	0.00		Calculated
3 Link-08	8.78	0 00:01	10.99	0.80	6.87	0.04	0.95	0.68	0.00		Calculated
4 Link-09	18.72	0 00:01	18.04	1.04	11.89	0.33	1.21	0.84	0.00		> CAPACITY

APPENDIX E

Proposed Improvements Calculations and Data

		Storr	m Sewer Pi	pe Calcula	tions		
		Prop.	Mannings			Prop.	
System	Pipe I.D.	Pipe Dia	n	Slope	Q(Prop.)	Capacity	V
		(inches)		(ft/ft)	(cfs)	(cfs)	(fps)
1	3	24	0.012	0.0032	8.02	13.86	4.41
	4	24	0.012	0.0036	8.9	14.70	4.68
	5	24	0.012	0.0036	10.7	14.70	4.68
2	2	30	0.012	0.0031	13.74	24.74	5.04
	3	36	0.012	0.0032	25.84	40.87	5.78
	4	42	0.012	0.0031	42.53	60.69	6.31
	5	48	0.012	0.0053	60.53	113.29	9.02
5	1	24	0.012	0.0411	36	49.68	15.82
	2	30	0.012	0.0411	81	90.08	18.35
	3	30	0.012	0.0411	86.8	90.08	18.35
	4	30	0.012	0.0411	90.2	90.08	18.35
	6	36	0.012	0.0404	108.5	145.23	20.55
6*	1	30	0.012	0.0253	91.9	141.36	14.40
	2	30	0.012	0.02	91.9	125.68	12.80
	3	30	0.012	0.02	112.2	125.68	12.80
	4	30	0.012	0.02	139.6	125.68	12.80
	5	30	0.012	0.025	139.6	140.52	14.31
	6	30	0.012	0.03	148.3	153.93	15.68
9	13834	30	0.012	0.02	61.38	62.84	12.80
	13840	36	0.012	0.02	85.05	102.19	14.46
	13841	42	0.012	0.02	105.05	154.14	16.02
10	94388	30	0.012	0.025	68.3	70.26	14.31
11	23216	42	0.012	0.0291	135.78	185.93	19.33
* System	6 proposed	l pipes are	dual barrel				

Table 22. Proposed Pipe Size Calculations

Table 23. Proposed Box Culvert Size Calculations

	Storm Sewer Box Culvert Calculations													
				Hydraulic	Mannings			Prop.						
System	Pipe I.D.	Height	Width	Radius	n	Slope	Q(Prop.)	Capacity	V					
		(inches)	(inches)	(feet)		(ft/ft)	(cfs)	(cfs)	(fps)					
6	7	30	72	0.88	0.012	0.0101	148.3	171.73	11.45					
8	14167.1	48	48	1.00	0.012	0.0031		110.32	6.89					
8	14167.1	48	48	1.00	0.012	0.004		125.31	7.83					
				Combined	l Q - 4 barre	els @ 4'x4'	451.6	471.25						

20.10

1.96

20.28

1.96

9.64

2.14

Max Vel (ft/s): Max Depth (ft): System 3 100-Year Event